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Abstract 

We study the problem of estimating rigid motion from a sequence of monocular 
perspective images obtained by navigating around an object while fixating a particular 
feature point. The motivation comes from the mechanics of the buman eye, which either 
pursuits smoothly some fixation point in the scene, or "saccades" between different 
fixation points. In particular, we are interested in understanding whether fixation 
helps the process of estimating motion in the sense that it makes it more robust, 
better conditioned or simpler to  solve. 

We cast the problem in the framework of "dynamic epipolar geometry", and pro- 
pose a,n implicit dynamical model for recursively estimating motion from fixation. This 
allows us to compare directly the quality of the estimates of motion obtained by impos- 
ing the fixation constraint, or by assuming a general rigid motion, simply by changing 
the geometry of the parameter space while maintaining the same structure of the re- 
cursive estimator. We also present a closed-form static solution from two views, and a 
recursive estimator of the absolute attitude between the viewer and the scene. 

One important issue is how do the estimates degrade in presence of disturbances 
in the tracking procedure. We describe a simple f~xation control that converges expo- 
nentially, which is complemented by a image shift-registration for achieving sub-pixel 
accuracy, and assess how small deviations from perfect tracking affect the estimates of 
motion. 

1 Introduction 

When a rigid object is moving in front of us (or we are moving relative to  i t) ,  the  information 
coming from the time-varying projection of the  object onto one of our eyes suffices t o  estimate 
i ts  motion, even when its shape is unknown. 

*Research sponsored by NSF NYI Award, NSF ERC in Neuromorphic Systems Engineering at Caltech, 
ONR grant N00014-93-1-0990. This work is registered as CDS technical report n. CIT-CDS 95-006, February 
1995. 



In order to observe the motion of the object while holding our head still and one eye 
closed, we can choose either to track it (or a particular feature on its surface) by moving the 
eye, or to  hold the eye still (by fixating some feature in the still background), and let the 
object cross our field of view. When it is us moving in the environment (or "object"), our 
eye constantly "holds" on some particular feature in the scene (smooth pursuit) or '"umps" 
between different features (saccadic motion). 

From a geometric point of view there is no difference between the observer rnoving or the 
object moving, and the problem of estimating rigid motion from a sequence of projections is 
by now fairly well understood. In this paper we explore how the fixation constraint modifies 
the geometry of the problem, and whether it facilitates the task. 

This problem has been in part addressed before in the literature of computatiorral vision. 
In [6, 51, the fixation constraint is exploited for recovering the Focus of Expansion (FOE) 
and the time-to-collision using normal optical flow, and then computing the full ego-motion, 
including the portion due to the fixating motion. In [12], a pixel shift in the image is used 
in order to derive a constraint equation which is solved using static optimization in order 
t o  recover ego-motion parameters, similarly to what is done in [3, 101. However, nowhere 
in the literature is the estimation of motion, performed by imposing the fixation constraint, 
directly compared with the estimation of a general rigid motion, due to the lack of a common 
framework. More seriously, most of the algorithms assume that perfect tracking of the 
fixation point has been performed, and it is not assessed how they degrade in the presence 
of inevitable tracking errors. 

In this paper we study the motion estimation problem in the framework of dynamic 
epipolar geometry, and assess how such geometry is modified under the fixation assumption. 
Since dynamic motion estimation schemes have been proposed in the framework of epipolar 
geometry [ll], we modify them in order -lo embed the fixation assumption. As a result, 
we can directly compare the estimates obtained by enforcing the fixation constraint with 
the estimates obtained by assuming general rigid motion. We also assess analytically how 
(small) perturbations of the fixation constraint affects the quality of the estimates, and we 
perform simulation experiments in order to probe the boundaries of validity of the fixation 
model. 

1.1 Scenario 

We will consider a system with a camera mounted on a two-degrees of freedom actuated 
joint (the eye) standing on a platform which is moving freely (with 6 degrees of freedom) 
in the environment (the head), as in figure 1. The architecture of the overall system is 
composed of two parts: an inner control loop that actuates the eye as to maintain a given 
feature in the center of the image-plane or to saccade to a different fixation point given from 
a higher-level decision system; an estimator then reconstructs the relative motion between 
the  eye and the object which is due to the motion of the head within the environment. These 
estimates can then be used in order to elaborate control actions with different tasks, such as 
obstacle avoidance, "optimal" estimation of structure, target pursuing etc. . 

The overall functioning of the scheme can be summarized as follows (see figure 1): 

1. Select features. 
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Figure 1: Overall setup o f  motion from fixation: an inner tracking loop controls the two 
degrees o f  freedom of  the  eye as t o  maintain a given feature in  the center o f  the irnage. 
T h e  images are then fed into the  motion estimation algorithm that recursively estimates the  
motion o f  the head within the  environment. T h e  estimates can possible be fed back t o  the  
head in order t o  accomplish different control tasks such as navigation, inspection, docking 
etc. (outer dashed loop). 

2. Select a target or fixation point. This could be the feature closest to the center of the 
irnage, or the best-conditioned feature, or the focus of expansion, or the singularity in 
the motion field or any other location assigned from a higher-level system. 

3. Control the gaze of the eye to the fixation point. Simple control strategies can be 
implemented, such as a one-step deadbeat, or control on the sphere with exponential 
convergence. The kinematics and geometry of the eye mechanism must be included in 
the model (it will be a change of coordinates in the state-space sphere), the dynamics 
can be neglected in a first approximation. 

4. Fine-tune ixa,tion by shifting the origin of the image-plane. 

5. Track features between successive time instants. This process (the correspondence 
problem) is greatly facilitated by two facts. First, since we fixate one point in the 
visible object, features only move little in the image, and always remain within the 
field of view. Second, knowledge of the motion of the camera from the actuators helps 
predicting the position of the features at successive frames. 



6. Go to 3. (Inner, fast tracking loop). 

7. Estimate relative motion between the object and the viewer. Both velocity or absolute 
orientation can be estimated. Check the quality of tracking. 

8. Possibly take control action on the head in order to achieve specified tasks (outer loop). 

We will only briefly describe the realization of the inner control loop (the "tracking" or "fix- 
ation" loop), which consists of a control system defined on a two-sphere, with measurements 
in the real projective plane (section 1.2). This problem is well-understood and extensive 
literature is available on the topic (see [4] and references therein). The rest of the paper 
assumes that tracking has been performed within some level of accuracy and analyizes the 
problem of estimating the remaining degrees of freedom. In section 2 we review the setup 
of epipolar geometry and show how it is modified by the fixation assumption. In section 3 
we show how the epipolar representation can be used in order to formulate dynamic (re- 
cursive) estimators of motion. The fixation assumption modifies the parameter space, but 
not the structure of the estimator, which makes it possible to compare motion estimators 
embedding the fixation constraint, with estimators of general rigid motions. We present 
both a closed-form solution from two views and a recursive solution based upon the epipolar 
representation. In section 5 we describe a model for estimating absolute attitude under the 
fixation constraint. 

While it is evident that fixation reduces the number of degrees of freedom, and therefore 
the estimator following the tracking loop will operate on a smaller-dimensional space and 
hence be more constrained, it is not trivial to assess how possible imprecisions in the tracking 
stage propagate onto the estimation stage. In section 4 we assess the sensitivity of the 
estimates with respect to the fixation constraint ,and define a measure of "goodness of 
tracking" that can be performed during the estimation phase. 

In section 6 we substantiate our analysis with simulation experiments on noisy synthetic 
image sequences. 

1.2 Fixation control 
The task of the inner tracking loop is that of keeping a given point in t,he center of the image 
plane. Equivalently, we can enforce that a given direction (projection ray) in IR3 coincides 
with the optical axis (see figure 2). In order to do so, we can act on two motors that drive 
the joint on top of which the camera is mounted. If we call [8 $IT the angles at the joint 
which describe the local coordinates of the state s of the eye on the sphere, and ul and u2 

the torques applied to the motors, then the geometry, kinematics and dynamics of the eye 
can be described as a nonlinear dynamical system of the form: 

If we call xo the spherical coordinates of the target point in the reference centered in the 
optical center of the camera, with the Z-axis along the optical axis, then the motion of the 
camera s(t)  induces a vectorfield of the form 



However, we cannot measure directly the spherical coordinates of the target point, since it 
is projected on a flat image-plane, rather than on a spherical retina (figure 2). In fact, the 
actual measure is a local diffeomorphism 

7T : S2 -t RP2 

xo t-+ Yo. (3) 

Our overall dynamic model can be therefore summarized as 

where no is a noise term due to the uncertainty in the tracking procedure. The goal of the 
inner tracking module can then be expressed as follows: 

take the control action u(t) such that yo(t) ---+ [0 0 11 E RP2 exponentially as 
t -+ m. 

When we neglect the dynamics of the eye, and we assume that we are able to act on the 
velocity of the joints through our actuators, we can simplify our model into one of the form 

which we can write in local coordinates, provided that yo is close enough to h(xo), as 

where h comprises a change of coordinates in the sphere and the perspective projection. 
From the above expression it is immediate to formulate a proportional control law with 

exponential convergence to the target fixation point yo either in the workspace, 

uw(x, YO) = Ic, (h-'(YO) - x) 7 ( 7 )  
or in the output space, represented for simplicity as the two-sphere 

where k, is the proportional constant, Jh is the jacobian of h: 

and VG is the geodesic versor 

with d = arcos(< h(x) ,  yo >) the distance between the output and the target along the 
geodesic 14). 

Exponential convergence is required as a mean of contrasting noise. In fact, if the control 
is fast, it can dump disturbances at a rate fa,ster than they arrive, which helps the system 
not to diverge in the presence of noise and disturbances. The above controls can be easily 
shown to generate exponential convergence to the desired goal [4]. 



1.3 Tracking and shift registration 

The purpose of the eye motion control is to keep a prescribed feature at the origin of the 
image plane using two degrees of freedom of the spherical joint of the eye. In principle, 
tracking of the target feature could be accomplished locally by shifting the origin of the 
image-plane at each step, provided that the feature remains within the field of view (see 
figure 2). In general, a combination of the two techniques is to be employed. The eye is 
rotated in order to  maintain the target feature as close as possible to the center of the image, 
then the image plane is shifted, with a purely "software" operation, in order to translate the 
origin of the image-plane on the target feature. Provided that the feature tracking scheme 
achieves sub-pixel accuracy [2], the shift-registration allows us to perform the tracking within 
one pixel accuracy on the image-plane. 

Figure 2: Tracking amounts t o  controlling the camera as t o  bring one specified feature-point 
in the origin o f  the  image plane. The  same task can be accomplished locally by shifting the 
image-plane, a purely software operation. The  two operations are equivalent locally t o  the 
extent in which the  target feature does not exit the field o f  view. 

2 Epipolar geometry under fixation 

In the present section we an.alyze the functioning of the second stage of the scheme depicted 
in figure 1, which consists of estimating the relative motion between the viewer and the 
object being fixated. Since one point of the object is still in the image plane, the object is 



free only to rotate about this point, and to translate along the fixation line. Therefore there 
are overall 4 degrees of freedom left from the fixation loop. 

We start off with studying how the well-known setup of the epipolar geometry is trans- 
formed under the fixation conditions. 

Figure 3: Imaging geometry. The  viewer-reference is centered in  the center o f  projection, 
wi th the  Z-axis pointing along the ptical axis. The  object reference frame is centered in the  
fixation point. Under the  fixation conditions the object can only rotate about the fixation 
point and translate along the fixation axis. 

2.1 Notation 

We call X = [ X Y Z I T  E lR3 the coordinates of a generic point P with respect to an 
orthonormal reference frame centered in the center of projection, with Z along the optical 
axis and X, Y parallel to the image plane and arranged as to form a right-handed frame (see 
figure 3). The relative attitude between the camera and the object (or scene) is described 
by a rigid motion g E SE(3). 

where ' go  E SE(3) is the change of coordinates between the viewer reference frame at time T 
and the object coordinate frame centered in the fixation point Po( t )  = [0 O d ( t ) lT .  Since we 
are interested in the displacement relative to the moving frame (ego-motion), we can assume 



that the object reference is aligned with the viewer reference at time t ,  so that we can write 
the relative orientation between time t and t + 1 in coordinates as 

which we will write as 
Xi(t + 1) = ~ ( t ) ~ " t )  + d(t)T(A, v) 

where 

and 

is the relative velocity along the fixation axis. The matrix R E SO(3) is an orthonormal 
rotation matrix that describes the change of coordinates between the viewer's reference at 
time t and that at time t + 1 relative to the object. T E R3 describes the translation of the 
origin of the viewer's reference frame. 

What we are able to measure is the perspective projection 71- of the point features 
onto the image plane, which for simplicity we represent as the real projective plane. The 
projection map n- associates to each p f. 0 its projective coordinates as an element of RP2: 

We usually measure x up to some error n, which is well modeled as a white, zero-mean and 
normally distributed process with covariance R, : 

y = x + n  n E N(0, A,). 

Due to the fixation constraint, the camera is only allowed to translate along the fixation 
axis, rotate about the fixation axis (cyclorotation) and move on a sphere centered in the 
fixation point with radius equal to the distance from the fixation point to the optical center. 
Therefore there are 4 degrees of freedom in the velocity. These can also be easily seen from 
the object reference frame: the object reference is free to rotate about the fixation point (3  
degrees of freedom) but can only translate along the fixation axis (1 degree of freedom). 

In eq. (13), these 4 degrees of freedom are encoded into R(t) (3 DOF) and v ( t )  (1 
DOF). However, note that also the distance from the fixation point d(t) enters the model. 
The epipolar constraint, which will be derived in the next subsection, involves only relative 
orientation and measured projections, while it gets rid of the 3-D structure and of the 
absolute distance d. 



Figure 4: Coplanarity constraint: the coordinates of each point in the reference of the 
viewer at time t ,  the coordinates of the same point at time t+ l  and the translation vector 
are coplanar. 

2.2 Coplanarity constraint 

The well-known coplanarity constraint (or "epipolar constraint", or "essential constraint") 
of Longuet-Higgins [8] imposes that the vectors T(R(t), v(t)), X"(t+1) and Xi(t) be coplanar 
for all t and for all points Pi (figure 4). The triple product of the above vectors is therefore 
zero; if we multiply both sides of (13) by aXi( t  + I ) ~ ( T A ) ,  where a E R - {O), we get 

which we will write as 
x i ( t  + l ) $ ( t ) ~ " t )  = 0 

with 
Q(t) -- Q(R(t), v(t)) = (T(R(t) ,v(t)))  A R(t). (19) 

We will use the notation &(t) when emphasizing the time-dependence, while we will use 
Q(R,v) when stressing the dependence of Q from the 3 rotation parameters contained in 
R and from the relative velocity along the fixation axix v. Note that Q is a,n element of a 
4-dimensional differentiable manifold which is embedded in R9, since Q is realized as a 3 x 3 
matrix. 

Since the coordinates of each point Xi(t) and their projective coordinates xi(t) span the 
same direction in nt3, the constraint (18) holds for xi  in place of Xi (just divide eq (18) by 
F i ( t  + l)Xi(t)):  

x"t + l)$(t)x"t) = 0 'v't , 'v'i. (20) 



2.3 Structure of the essential manifold 

For a generic T t IR3 and a rotation matrix R, the matrix Q = (TA)R belongs to the 
so-called "essential manifold" 

E A {SR I S E so(3), R t S0(3)}, (21) 

which can be characterized as the tangent bundle to the rotation group TSO(3) [ l l ] .  Under 
the fixation constraint, T has a special structure which restricts Q to a submanifold of the 
essential manifold. In this section we study the geometry of such a submanifold induced by 
the fixation constraint. We have already seen that the dimension of the space reduces from 
6 down to 4, since two degrees of freedom are used in order to keep the projection of the 
fixation point still in the image plane. 

After some simple algebra, it is easy to see that 

where 

and a is an unknown scaling factor due to the homogeneous nature of the coplanarity con- 
straint. If we restrict the essential matrices Q E E to have unit norm (as in the definition 
of the "normalized essential manifold" [ll]), tlien a is fixed to be a = L. Note that this 

11Q11 
arbitrary scaling does not affect neither the relative velocity v (which is already a scaled 
parameter) nor the rotation matrix R. We will see in section 2.4 that a = -.&- is a necessary 

IIQll. 
choice in order to avoid singularibies in the representation. Under the fixation constraint, 

Q both the essential manifold Q and its normalized version - belong to a four-dimensional 
11Q11 

submanifold of the essential manifold E. The essential matrix is therefore defined, under 
the fixation constraints, by the Sylvester's equation (22), with strongly structured unknowns 
R E SO(3) and v E IR. Other equivalent expressions can be derived as follows, assuming 
a = 1: 

Another useful way of writing the epipolar constraint can be derived as follows. Since the 
constraints (20) are linear in the components of the essential matrix Q,  we can reorder them 



where ~ ( t )  is a N x 9 rnatrix which depends on the measurements x;(t), x;(t + 1) whose 
generic row can be written as 

xi. = [ ~ l ( t  + l ) ~ f ( t )  X;(t + l ) ~ $ ( t )  X;(t + 1) X$(t + l)Xf(t) x;(t + l)x;(t) x;(t + 1) X;(t) X;(t) 1 ] ( 9 9 )  

Q is now interpreted as a 9-dimensional column vector obtained by stacking the rows of Q 
one on top of each other. It is easy to verify that the above can be written as follows: 

where 

is a skew-symmetric, 9 x 9 matrix with rank 8 which depends only upon the translational 
velocity v.  I is the 3-dimensional identity matrix and R is the usual rotation matrix now 
interpreted as a nine-dimensional column vector obtained by stacking the rows of R on top 
of each other. We will not make a distinction between 3 x 3 matrices and 9-dimensional 
column vectors, whenever it is clear from the context which representation is employed. 
Since both the last row and the last column of S are identically zero, we can delete them 
along with the last column of x and the last element of R, which is now interpreted as a 
8- dimensional column-vect or. 

From the above characterizations of the essential matrix constrained by the fixation hy- 
pothesis it is possible to draw some interesting conclusions. In particular, by left-multiplying 
the above equation by [0 0 11, we anihilate the second (rightmost) term of the right hand-side 
of (22), while the column vector [0 0 1IT anihilates the leftmost term, if right-multiplied. 
From this simple observation we can derive a necessary condition which acts as a consistency 
check for the quality of fixation: 

Q33 = 0- (32) 

In general, from a number of point matches, we can derive an approximate estimate of the 
matrix which, due to noise, will be such that Q33 + 0; later in section 4 we will see how 

11Q11 
IQS3( gives a measure of how accurate the inner tracking loop is. 

2.4 Singularit ies and normalization of the epipolar representa- 
t ion. 

In the characterizations of the essential matrices described in the previous section, the un- 
known scaling factor has been taken into account by fixing the scalar cr = 1, and therefore 
the matrix Q is uniquely defined. I-Iowever, there is a continuum of possible motions which 
correspond to the essential matrix 

Q(v1 fl? = 0 (33) 



Figure 5:  Epipolar setup. Under the fixation coilstraint, both the centers of projection at 
time t and t+1, and the optical centers of the two cameras lie on the same plane, the epipolar 
plane. The intersection of the epipolar plane with the image planes is the epipolar line. The 
epipolar plane is invariant after fixation, for the camera can only translate along the plane, 
and rotate about a direction orthogonal to it. 

in particular 

v = l  f l =  [:I 1 1 9 ~ / 0 , ~ )  =+ Q(v,f l )=O (34) 

since Q = (TA)~'" with T = 0, and therefore all motions consisting of pure cyclorotation 
(rotation about the optical axis or fixation axis) generate a zero essential matrix or an 
undefined normalized essential matrix. 

If we know that motion occurs only about the optical axis, we can easily estimate the 
amount of rotation 0 by solving in a lest-squares sense the rigid mot,ion equations (12), which 
reduce, in the case of pure cyclorotation, to 

In order to get rid of the singularity just mentioned, we need to normalize the essential 
matrices. Since the epipolar constraint is defined up to a scale, it can be arbitrarily multiplied 
by a constant. In particular, if we multiply it by -!- we get rid of the singularity, since the 

11Q11 
translation vector T is constrained to be of unit norm. Note that we do not loose any degree 
of freedom in the representation, for the scaling does not affect the mot,ion parameters v, fl. 



In section 3.3 we will see that this representation affects the convergence of the filter for 
estimating motion when away froin the singular configuration. When the object purely 
rotates about the optical axis, the translation vector is undefined; we will see in section 3.3 
how it is possible to sort out this situation. 

3 Estimation from the epipolar constraint 

The epipolar constraint, with the addition of the fixation assumption, can be used in order 
to estimate the 4 free parameters (three for rotation and one for relative translation along 
the fixation axis). The first solution we propose is a closed-form solution which is correct in 
the absence of noise, but is far from being efficient in the presence of uncertainty, since the 
structure of the epipolar constraint is not imposed in the estimation. 

The second solution is a more correct one, for it enforces the structure of the epipolar 
constraint during the estimation. It consists of a dynamic estimator in the local coordinates 
of the essential manifold. The constraints are enforced by construction and the structure 
of the parameter manifold is exploited, while the computation is carried out by an Implicit 
Extended Icalman Filter (IEKF) in the lines of (111. 

3.1 Closed-form, two-frames solutions 

Consider N visible points P" Vi  = 1 . . . N, and the N corresponding scalar constraints (20). 
The constraints are l inear in the components of $, and can be used for estimating a generic  
3 x 3 matrix 6 which is least-squares compatible with the measurements, in the sarne way 
as [8, 13, 111. 

Once the ~natrix Q has been estimated, we can derive a set of constraints for the com- 
ponents of the rotation matrix R. Just for the sake of simplicity, assume that we represent 
the rotation matrix locally using Euler angles a # 0, ,L? $I 0 and y # 0: 

where Rz(a) indicates a rotation about the Z-axis of a radiants 

and similarly for Ry ( P )  and Rz(y). From the above expression of R, and the expression for 
Q given in eq. (27)) it is immediate to solve for the Euler angles: 

a = arctan (-2) 



7 = arctan (2) 
provided that Q23 # 0 and QS2 f 0. It is immediate to see that Qa3 = Q23 = 0 only if 
rotation occurs only about the optical axis with an angle 8 = a + y. In such a case, equation 
(27) becomes 

S Q ( ~ - V )  ~ ~ ( 1 - V )  O 
~ ~ ( 1 - V )  0 

0 0 I 
and we can solve for Q 

provided that Q12 # 0, in which case we have a = j5' = y = 0. Once the rotation parameters 
have been estimated, the translation parameter v can be recovered from the other elements 
of Q. For instance, when /? = 0, 

Alternatively, one may start with a different local coordinate parametrization of R, for 
example the exponential coordinatization 

and plug the result into equation (22), which can then be solved for the three unknowns 
fll . . . f13 using an iterative optimization method such as a gradient descent. 

It must be stressed that these methods do not enforce the structure of the parameter space 
during the estimation process. Rather, generic, non-structured parameters are estimated, 
and then their structure is imposed a-posteriori in order to recover an approximation of the 
desired estimates. 

The epipolar constraints can also be used for formulating nonlinear filters that estimate 
the motion components over time, while taking into account the geometry of the parameter 
space. This is done in the next section. 

3.2 Implicit dynamical filter for motion from fixation 

Consider the local parametrization of the essential matrix Q(R, v), which is 

where R E E3 is defined for llRll E [O, T) by the equation [9] 

& R. 



We can write a dynamic model in the local coordinates of the essential manifold, having as 
implicit measurement constraints the epipolar constraint (20) where the matrix Q is now 
expressed as a function of' the local coordinates, Q ( [ ) :  

Estimating motion amounts to identifying the parameters [ from the above model. This can 
be done using the local identification procedure presented in [Il l ,  which is the IEKF based 
upon the model 

5(t  + 1) = J( t )  + n d t )  
yi( t  + ~ ) ~ ~ ( [ ( t ) ) ~ ~ ( t )  = fi;(t) 'v'i = 1 . . . N (49) 

where the second order statistic of the residual f i  is computed according to [Ill. An alter- 
native way of writing the above model is 

the equations of the estimator, as derived from [Il l ,  are: 

prediction step: 

where Qt is the variance of the noise nc driving the random walk model and is intended 
as a tuning parameter, and P is the variance of the estimation error of the filter. 

update step: 

where L(t  + 1) is the Extended Kalman Gain [7], and 1' = I - LC,  with C A 22 at i(t+ilt)' 

3.3 Dealing with singularit ies in the represedat ion 

In section 2.4 we have pointed out a singularity in the non-normalized epipolar representation 
when the relative motion between the scene and the object consists of pure rotation about 
the optical axis. This phenomenon is to be expected, for pure rotation about the optical 
axis generates zero ego-motion translation 



which is a singular configuration for the motion estimation problem [Ill. As long as there 
is a non-zero translation (that is, as long as there is some components of rotation about 
an axis non corresponding to the optical axis), the constraints are well-defined. However, 
serious problems may occur while estimating motion even when the motion parameters are 
far away from the singular point. 

In order to visualize that, we can imagine the innovation of the filter as living on a 
residual surface that maps some particular motion v, 61 onto EtN when iV feature points are 
visible. The filter will try to update the state 6, fi as lo reach the minimum of the residual. 
Of course the motion that generated the data v,  R corresponds to a minimum of the residual 
surface (it would be zero in absence of noise). However, also the location v = 1, R = [0 0 81' 
corresponds to a zero of the residual, which is a hole in the residual surface. Therefore the 
filter must be able to reach the minimum without falling into the singularity (see figure 6). 

This can be done provided that the initial conditions are close to the minimum of the 
residual surface corresponding to the true motion. However, in the presence of high measure- 
ment noise levels, the residual surface becomes increasingly more irregular, and eventually 
the filter falls into the singularity. This effect will be illustrated in the experimental section, 
where we will show that in the presence of high noise levels, the filter initialized fare enough 
from the true value of the state falls into the singularity, the innovation goes to zero and the 
variance of the state increases. 

Figure 6: Singularity in the non-normalized epipolar representation. The residual surface, 
where the innovation of  the filter takes values, has a minimum corresponding to the true mo-  
tion, but also a minimum corresponding to  cyclorotation. The filter must be able t o  converge 
t o  the true minimum without falling into the singularity. The normalized epipolar represen- 
tation is a way of  getting rid of  the singularity, for the translation vector is constrained to  
having unit norm. 



One way of getting rid of this singularity is to use the normalized essential matrix, which 
corresponds to dividing the epipolar constraint by the norm of translation. This eliminates 
the singularity, since T is constrained to having unit norm. However, the motion correspond- 
ing to pure cyclorotation gives an essential matrix which is undefined, and therefore the filter 
will give arbj trary estimates. 

In order to sort out the case of pure rotation about the optical axis, we can first try to  
fit a 8 into the purely cyclo-rotational model 

If the residual is big enough it means that rotation is not purely about the optical axis. 
Therefore the translation induced in the viewer's reference is non-zero, and the normalized 
epipolar constraint is well-defined. We will see in the experimental section how the filter 
based upon the normalized epipolar representation performs where the non-normalized filter 
would fall into the singularity. 

4 Vergence control, quality of fixation and sensitivity 
of constraints 

One may argue that, in the proposed architecture, the estimation scheme that follows the 
fixation loop is "blind", in the sense that it cannot reject disturbances due to imperfect 
tracking. In the present section we analyze bow the estimation algorithm is modified in the 
presence of non-perfect tracking, and how it can assess the quality of the fixation. 

We will consider two different kinds of non-perfect tracking. One in which the two optical 
axes (at time t and t + 1) intersect at a point which is not the desired fixation point, and 
one in which the two optical axes do not intersect at all. 

4.1 Vergenee control 

Let us assume that the optical axis of the camera at time t intersects the optical axis at 
time t + 1 in a "vergence point" which is different from the desired fixation point (see 
figure 5). Consider the plane determined by the two centers of projection a.nd the optical 
center (fixation point) in the camera at time t ,  which is called the epipolar plane at time 
t .  If the optical axes intercept, there must exist one point on the projection of the optical 
axis of the camera at time t which passes through the optical center of the camera at time 
t + 1. Equivalently, the optical center at time t + 1 must belong to the epipolar plane. It is 
immediate to see that this can happen only if the direction of rotation is orthogonal to the 
direction of translation, which is constrained to belong to the epipolar plane (see fig. 5). In 
brief, the epipolar plane is invariant under the vergence conditions. 

Therefore, under the vergence conditions, we can identify one point Po at the intersection 
of the optical axes, for which the fixation constraint is satisfied, although it is not the desired 
fixation point. From Chasles' theorem [9] we can conclude that the algorithm proposed in 
the previous section estimates the motion of the object relative to the point Po, rather than 
relative to the desired fixation point. If the mismatch between the target point and the 



actual vergence point is t along the epipolar line, then the mismatch along the optical axis is 
approximately dt, where d is the distance between the optical center and the target fixation 
point. 

A natural question to ask at this point is how the algorithm following the fixation loop 
can verify whether the vergence conditions are satisfied and, if they are not, send a feedback 
signal to the fixation loop. 

4.2 Vergence conditions, quality of fixat ion 

When the optical axes do not intercept, the epipolar constraint is not satisfied for the optical 
center. The vergence constraint between two time instants can be expressed by saying that 

the two optical axes intersect 3 X o  such that xo(t) = [0 O 1IT =+ xo(t + 1 )  = 
[0 O 1IT. 

It is immediate to verify that the above conditions hold if and only if the direction of 
translation or orthogonal to the direction of rotation. Indeed, a more synthetic condition 
that can be derived by observing that 

the optical axes intersect w Qgg = 0. 

In fact, clearly if the optical axes intersect, the optical center xo must satisfy the epipolar 
constraint: 

xo(t + ~)~C$rco(t) = O =+ Q33 = 0. ($7) 

Vice-versa, assume that Yxo, the condition xo(t + 1 )  # [0 O 1IT implies xo(t) # [0 O 1IT while 
Q33 = 0. Write xo(t + 1 )  as [a ,B 1IT with a,B Lf: 0. Then the epipolar constraint must be 
violated for all correspondence points of the form [0 O 1IT: 

If QI3 = QZ3 = 0, then we conclude that Qg3 + 0, from which the contradiction. If at least 
one of Q13, QZ3 # 0, by choosing a = -QZ3, /3 = QI3, we conclude again Q33 # 0, which 
contradicts the hypotheses. 

Therefore, when the vergence conditions are not satisfied and the optical axes do not 
intersect, the scalar IQ33( is a measure of the quality of vergence. From a geometrical point 
of view, Qg3 is the volume of the parallelepiped with sides equal to the translation vector, 
the optical axis of the camera at time t and the one at time t + 1. 

Since at each step we can estimate the matrix Q from all the visible points, we could use 
Q3g as a sensory signal to be fed-back to the fixation loop. This would allow us to design 
a vergence control that exploits all the visible features, rather than the projection of the 
fixation point alone. This issue is not explored in the present paper and is an object of 
future research. 



4.3 Sensitivity and degradation of the constraint 

In the previous sections we have treated the problem of motion estimation as an identification 
task where the class of models was determined by the epipolar constraint under the fixation 
assumption. We now want to ask ourselves: suppose the actual process generating the date 
does not exactly fall within the given class of models, how do small deviations from the class 
affect the quality of the estimates? 

More specifically, suppose that our camera is not tracking exactly the fixation point. The 
measurements we get from the image plane do not satisfy the epipolar constraint of eq. (22) 
for any choice of the parameters. However, if the deviation from the constraints is small, we 
would like our estimates to deviate little from the true motion parameters. 

Suppose that our measurements are generated for an object which rotates about the 
fixation point with R,  translates along the fixation axis by v and also drifts away from the 
fixation point with some velocities €1 and €2 along X and Y respectively. Therefore the 
model generating the data looks like 

where we measure 
xyt, t-) = n ( ~ " t ,  E))  

which we collect into the matrix 

x( t ,  E) 

as in equation (29). For t: = 0 the epipolar constraint is satisfied by the actual motion 
parameters v, S2: 

x(t, ~ ) S ( V ) R ( R )  = 0 (62) 

where S and R are a 9 x 9 matrix and a 9-vector defined as in (30). However, in the presence 
of disturbances E, there is no element in the class of models that satisfies the constraints, i.e. 

At this point, assuming c small, we may seek for the perturbations 6 = v - Sv and 0 = R -5R 
that make the above residual zero up to second order terms: 

Sv, SR = argminI/~( t , t : )S(v - 5v)R(R - 5R)II. (64) 

This is essentially the task of the recursive filter described in the previous sections, where 
the process to be minimized is the innovation. Expanding around the zero-perturbation 
conditions, we have 



We can now find the perturbations Sv = SV(E, v, R) and SR = SR(E, v,  fi) that make the 
residual zero up to higher order terms from 

The N x 4 matrix A loses normal column rank only at the singular configuration v = 1, 
R = [0 O dlT for all 0 E [0, T). However, this configuration does not belong to the state-space 
of the filter, for it has been eliminated by the normalization constraint. Therefore we can 
conclude 

and the induced norm of the matrix C(v, SZ) is a measure of the "gain" between (small) 
disturbances in the constraints (or drifts outside the model class) and the errors in the 
estimates. In the experimental section we will show the result of a simulation where the 
disturbance level was increased up to the point in which the filter based upon the fixation 
constraint did not converge. 

5 Attitude estimation frorn fixation 

In some cases it may be desirable to reconstruct not only the relative velocity between the 
object being fixated and the viewer, but also their relative configuration, in the lines of [I]. 
Of course the relative configuration, assuming the initial time as the base frame, can be 
obtained by integrating velocity information, and this is indeed the only feasible solution 
when the motion of the viewer induces drastic changes in the image, such as occlusion, 
appearance of new objects etc. . 

While in most applications the scene changes significantly and we cannot assume that 
the same features are visible over extended periods of time, in the case of fixation we can 
assume that the object stays in the field of view and we can integrate structure information 
from the same features to the extent in which they are visible. 

Notice that, while in all the previous cases involving estimation of velocity (or relative 
configuration in the moving frame), we could decouple the motion parameters from the 
structure and therefore formulate filters involving only motion parameters and measured 
projections, in the case of the absolute orientation, it is necessary to include structure in the 
state of the filter. 

The fixation assumption gives the strong constraint that the motion of the object being 
fixated rotates about the fixation point and translate along the fixation axis. This results 
in the fact that the object remains in the field of view as long as we fixate it. Therefore we 
will adopt an object-centered model, where the coordinates of each point are constant over 
time: 

O P Z  = const. (69) 



Since we measure the projection of the coordinates of the point in the reference frame of 
the camera, we can enforce that the coordinates relative to the camera reference at the first 
instant are constant: 

0 - [ !o ] = const (70) 

which relates to the measured projection via 

where tRt, is the relative orientation between the viewer reference at time t and the same 
reference frame at the initial time to. 

We may conceive at this point a dynamic model having the trivial constant dynamics of 
the points in the state, and the above projection as the measurement constraint. In order 
to do so, we have to insert 'Rto and d(t), along with their derivatives, into the state of the 
filter, which becomes therefore 3N + 8-dimensional: 

topyt + 1) = topi(t) t o  pi (0) = [ y ] i =  I . . ,  

tRto (t + 1) = tRto (t)eRA Rto (0) = I 
n ( t  -I- 1) = n( t )  + n~ n(o) = 0 
d(t + I)  = d(t) + v(t) d(0) = 

(t) + n,(t) v(0) = 0 

where .ir denotes an ideal perspective projection. In the case of weak-perspective, the last 
measurement equation transforms into 

1 0 0  to pi 
Y = [ 0 1 0 ] '"to d- 

There is an additional constraint that can be imposed in order to set the overall scaling, 
which is 

The above can be imposed either as a measurement constraint, or as a model constraint by 
setting the variance of the corresponding state to zero, as in [I]. 

The above model may be reduced into a minimal one by removing the dynamics of the 
absolute orientation d ( t ) ,  R(t), and by exploiting the fact that 



Since we measure the initial projection of each feature point, we can leave only the scaling 
(initial depth) 2; in the state. It must be noticed, however, that the error in the location 
of the initial features is propagated through time, since we do not update the states corre- 
sponding to the measured projections. If one is willing to trade the drift due to the initial 
measurement error with eliminating 2N states from the model, he ends up with the following 
system 

where R(t) and d(t) are computed from the states R(t) and v(t) at each time by integrating 

A simple EKF based upon the model above recovers the structure modulo the initial distance 
from the fixation point do. If such a distance is known, it is possible to recover the full 
structure, as well as the motion parameters a ( t )  and v(T). 

6 Experiments 

6.1 Experimental conditions 

In order to test the effectiveness of the schemes proposed, and compare it against equivalent 
motion estimation techniques that do not take into account the fixation constraint, we have 
generated a cloud of dots within a cubic volume at d = 2rn in front of the viewer. These 
dots are projected onto and ideal image plane with unit focal length and 500 x 500 pixels, 
corresponding to a visual angle of approximately 30'. Noise has been added to the projec- 
tions with 1 pixel std, corresponding to the average performance of current feature tracking 
techniques [2]. One random point in the cloud is chosen as the fixation point, and the cloud 
is then made rotate about this point and translate along the fixation axis with smooth but 
non-const ant velocity. 

6.2 Recursive filters 

In figure 7 (top-left), the 4 components of the state of the filter described in section 3.2 
are plotted, along with the ground truth in dotted lines. The plot on the right shows the 
absolute estimation error. 

The same data have been fed to the essential filter [Ill,  which estimates 5 states cor- 
responding to the direction of translation and the rotational velocity without enforcing the 
fixation constraint. The states corresponding to the same motion described above, as long 



as ground truth, are plotted in the left-plot of figure 7 (bottom). The estimation error is 
marginally higher than the one of the filter with the fixation constraint. 
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Figure 7: (top-left) Estimates of the kdimensional state of the filter £or estimating relative 
orientation under the fixation constraint. Filter estimates are in solid lines, while ground 
truth is in dotted lines. The estimation error (top-right) is smooth and strongly correlated, 
which is a symptom ofpoor tuning of the filter. I f  we do not enforce the fixation constraint, 
we need to estimate 5 motion parameters. The filter which does not enforce the fixation 
consiraint converges faster (bottom-left) and the estimation error is larger but far less cor- 
related (botiom-right), which indicates that the potential limits of the scheme have been 
achieved. 

In our preliminary set of experiments we have observed a higher robustness level in the 
filter enforcing the fixation constraint. For example, the maximum noise level tollerable by 
the filter not enforcing the fixation constraints in this particular experimental setup is 1.5 
pixels, while the filter enforcing fixation performs up to 2.5 pixels, as reported in figure 8. 

6.3 Attitude estimation 
In figure 9 we report the estimates of the absolute orientation and structure as estimated by 
the filter described in section 5 .  The structure parameters (initial depth of all points) has 
been plotted against the true parameters, assuming that the initial distance of the fixation 
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Figure 8: (left) Convergence of the states of the filter enforcing the fixation constraint for a 
noise level in the feature tracking of 3 pixels. The filter that does not enforce the fixation 
constraint does not converge in the same experimental situation. Initial conditions, tuning 
of the filters and noise levels are the same for both filters. 

point is known. In general, structure can be recovered only up to a scale factor. The four 
motion components are also plotted, along with the estimation error, in the right plot. 

It must be noticed that this filter has a N +$-dimensional state, unlike the one described 
above which has dimension 4. Furthermore, the filter has proven very sensitive to the initial 
conditions in the motion parameters, while the structure parameters can be safely initialized 
to 1, which corresponds to having the visible objects flat on the image plane. The error 
is significantly correlated and convergence is slow for the motion parameters, which are 
observable only through 2 levels of bracketing with the state equation. 

In case occlusions occur in the image plane or some features disappear or exit the field of 
view, it is necessary to resort to the schemes described in section 3.2, unless we are willing 
to deal with a filter with a variable number of states. 

6.4 Singularit ies and normalization 

As we have mentioned in section 2.4, the non-normalized epipolar representation contains a 
singularity in v = 1, R = [0 0 @IT,  where the innovation of the filter becomes zero. Therefore, 
even when motion does not correspond to pure translation about the optical axis (the singular 
configuration), the filter may converge to the singular configuration whenever initialized far 
enough from the true state. In particular, when the noise level increases, the residual surface 
becomes more and more irregular, and it becomes easier for the filter to fall into the singular 
configuration. 

In figure 10 (left) we show the state of the filter that is initialized far from the true 
inital conditions for a measurement noise level of 1 pixel. The filter converges to a state 
corresponding to v = 1 and LR = [0 0 i9IT with some 6. Correspondingly, the innovation goes 
to zero (fig. 10 right) and the filter saturates. The variance of the estimation error keeps 
increasing after the filter has saturated. In figure 10 (bottom) we plot the state with errorbars 



frame frame 

Figure 9: (top-left) Estimates of the N + 4-dimensional state of the filter for estimating 
absolute orientation and structure. Success in the estimation process depends crucially on 
the initial conditions of the motion parameters (bottom-left), while the structure-parameters 
can be safely initialized to 1, vvhich corresponds to having the visible objects flat on the 
image-plane. The estimation error (t op-right) is strongly correlated and decays slowly. The 
estimation error for the motion parameters, initialized within 1 % off the true values, is 
plotted in (bottom-right) for comparison with the relative motion estimation scheme. 

corresponding to the diagonal elements of the varianceJcovariance matrix of the estimation 
error. It can be seen that, after the variance decreases due to the initial convergence towards 
the minimum, it keeps increasing steadily once the filter has saturated. 

When the same initial conditions and noise levels are applied to the filter based upon the 
normalized essential matrices, convergence is achieved without any problems of saturation 
(figure 11). 

6.5 Sensitivity to  the fixat ion constraint 

In order to experiment with the degradation of the filter enforcing the fixation constraint in 
presence of motions that violate the fixation assumptions, we have perturbed the experiments 
described above by translating the cloud on a plane orthogonal to the fixation axis at random 
within a standard deviation ranging from 1% to 6% of the norm of the essential matrix. We 



have started from the true initial conditions and added no noise to the measurements. For 
each level of disturbance, we have run 100 experiments, and computed the estimation error 
for the translation along the fixation axis and for the rotation components. The results are 
plotted in figure 12, where we show the average error across different trials, with the standard 
deviation showed as an errorbar. The results seem to confirm that the degradation of the 
estimates is graceful for small disturbances. However, when the disturbance exceeds 6% of 
the overall norm of the current relative motion, the filter does not reach convergence. 

7 Conclusions 

We have studied the problem of estimating the motion of a rigid object viewed from a 
monocular perspective camera which is actuated as to track one particular feature-point in 
the scene. We have cast the problem in the framework of epipolar geometry, and formulated 
both closed-form and recursive schemes for recursively estimating motion and attitude using 
the fixation constraint. The framework of dynamic epipolar geometry allows us to compare 
the proposed scheme directly against the equivalent scheme that does not enforce the epipolar 
constraint. Also, the degradation of the performance in the presence of disturbance in the 
fixation hypothesis is assessed. 

The performance of the estimators have been compared via simulations to the equivalent 
estimation schemes that does not enforce the fixation constraint. The results seem to indicate 
that using the fixation constraint helps achieving better accuracy, in the presence of perfect 
tracking. Degradation of the performance in the presence of disturbance in the fixation 
constraint is graceful for small disturbances. It will be subject to future research to study 
how to compensate for non-perfect tracking by feeding back a measure of "goodness of 
fixation" and performing a shift-registration of the origin of the image plane. 
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Figure 10: (top-left) Convergence o f  the filter t o  the singular configuration. f i r  a noise level 
o f  1 pixel and the initial conditions far enough from the true values, the state of  the filter 
ends up in the minimum of  the  residual surface corresponding to  cyclorotation (all states are 
zero but which is arbitrary). Correspondingly the innovation becomes zero (top-right) 
and the variance increases (bottom plot). The  variance is represented via the  errorbars in 
the  motion estimates, which are the diagonal elements o f  the variance/covariance matrix o f  
the  estimation error. 
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Figure 11 : (top-left) Convergence of  the filter enforcing the normalization constraint. There 
are no singular configurations in the state manifold, and the filter converges fast to  the 
correct estimate. The  innovation is small but non-zero (top-right), and the variance o f  the 
state decreases as time grows (bottom). 



Figure 12: Estimation error versus disturbar~ces in the fixation constraint. The plots show the 
average over 100 trials, with the standard deviation across trials shown as an errorbar. When  
the fixation constraint is violated by adding spurious translation components ranging from 
1 to  6 percent of the norm of  the fixating motion, the estimation error increases gracefully. 
In the left plot the estimation error for the tl-anslation along the optical axis, on the right 
the norm o f  the estimation error for the rotational velocity. 


